Asynchronous Dynamic Bayesian Networks

نویسندگان

  • Avi Pfeffer
  • Terry Tai
چکیده

Systems such as sensor networks and teams of autonomous robots consist of multiple autonomous entities that interact with each other in a distributed, asynchronous manner. These entities need to keep track of the state of the system as it evolves. Asynchronous systems lead to special challenges for monitoring, as nodes must update their beliefs independently of each other and no central coordination is possible. Furthermore, the state of the system continues to change as beliefs are being updated. Previous approaches to developing distributed asynchronous probabilistic reasoning systems have used static models. We present an approach using dynamic models, that take into account the way the system changes state over time. Our approach, which is based on belief propagation, is fully distributed and asynchronous, and allows the world to keep on changing as messages are being sent around. Experimental results show that our approach compares favorably to the factored frontier algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Articulatory feature recognition using dynamic Bayesian networks

We describe a dynamic Bayesian network for articulatory feature recognition. The model is intended to be a component of a speech recognizer that avoids the problems of conventional “beads-on-a-string” phoneme-based models. We demonstrate that the model gives superior recognition of articulatory features from the speech signal compared with a stateof-the art neural network system. We also introd...

متن کامل

A Parallel Learning Algorithm for Bayesian Inference Networks

We present a new parallel algorithm for learning Bayesian inference networks from data. Our learning algorithm exploits both properties of the MDL-based score metric, and a distributed , asynchronous, adaptive search technique called nagging. Nagging is intrinsically fault tolerant, has dynamic load balancing features, and scales well. We demonstrate the viability, eeectiveness, and scalability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005